Simplified models to assess environmental impacts for geothermal installations

(3) A simplified model for a geothermal system Liquid/Vapour- hydrothermal system

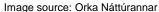
30/09/2020

Dr. Hafthor Ægir Sigurjonsson meðeigandi

²/ Representative Geothermal System (RGS) = Hellisheiði

O PROJET CONTEXT


- Located 18 km outside of Reykjavik
- Plant occupies 112 km2
- Single and Double flash power plant
- Combined Heat and Power Plant with:
 - 303 MW Electrical Capacity
 - 133 MW Thermal Capacity
- Novel CarbFix method integrated, mitigating CO2 and H2S through geological storage.



O PLANT DESCRIPTION

Construction

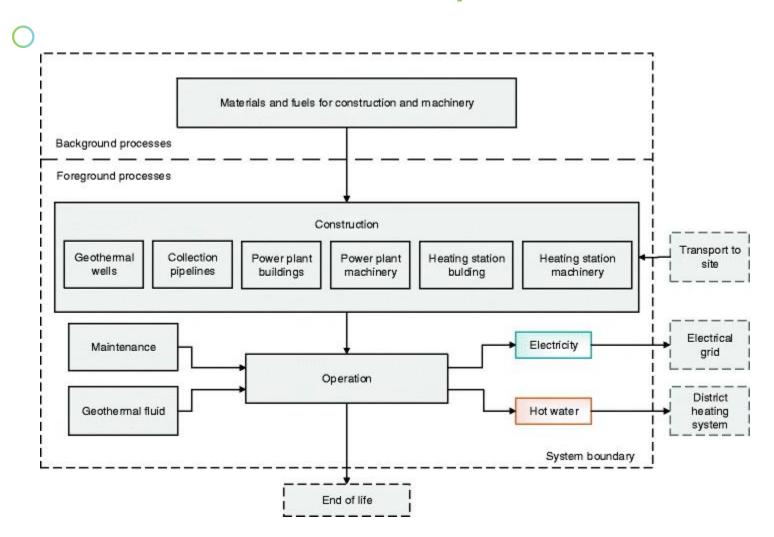
- Well Drilling
 - 47 Geothermal drilled + 17 reinjection wells
 - Average well depth ~2,220 m, with ±800-900m variation
 - Average diesel use per meter of well drilled ~57-65 L/m
- Collection pipelines
 - 36,000m of pipeline for construction phase
 - Average of ~765m per well
 - 197 kg of steel needed per meter pipe

PLANT DESCRIPTION

Maintenance

- Make up wells
 - 23 make up wells estimated, ±7 wells variability
 - 9,000m additional collection pipelines
- Make up wells include electric drilling
 - Electric drilling LCI included using data from drill rig operators
 - Estimated % of make up wells electrically drilled dependent on number of makeup wells needed within case study
- · Machinery maintenance included
 - Estimated to be 1% of production materials with ±0.5% variability

Operations


- Emissions from power plants
 - 1.4 g CO2/kg-geothermal fluid with Min and Max 1.152 and 2.304, respectively
 - 0.0021 g CO2/kg-geothermal fluid with Min and Max 0.0014 and 0.0024, respectively
 - CO2 and H2S emissions experience long-term variability due to fluctuations of reservoir composition
- Operations
 - Average electrical capacity factor 87% with Min and Max 79% and 94% over five year period, respectively
 - Average thermal capacity factor 55% with Min and Max 42% and 67% over five year period, respectively
 - · 30 year estimated lifetime

Abatement

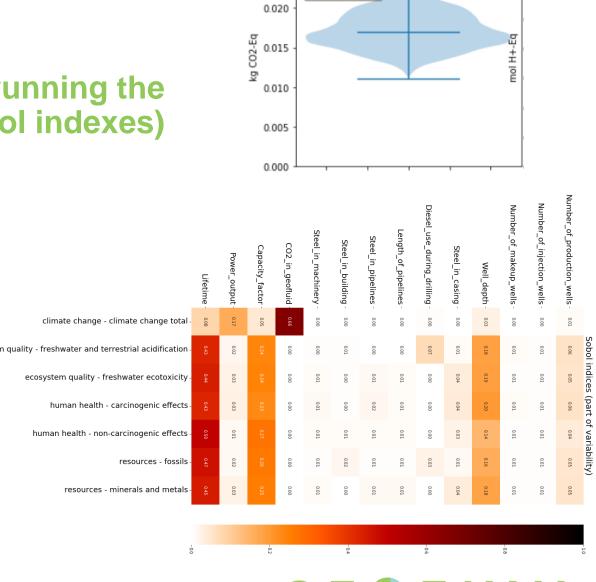
- Abatement provided by CarbFix method included, with the following characteristics:
 - Ability to sequester~34% CO2 and 71% H2S emissions
 - 585 kW electrical capacity required
 - 88.5% estimated capacity factor with ~ ±12% variability

Definition of the reference parametrized LCA model

- Simplified scheme of the LCA reference parameterized model
- Main variables used for parametrization highlighted in blue

Definition of the variables for the reference parametrized LCA model

Variable parameter	Description of factors	Unit	default	min	max
Number_of_production_wells	Number of production wells required (wide and narrow)	number of	47	28.2	65.8
Number_of_injection_wells	Number of injection wells required	number of	17	10.2	23.8
Number_of_makeup_wells	Number of make- up wells required	number of	23	16	30
Well_depth	Depth of each well	meter	2,242	1,394	3,323
Steel_in_casing	Steel amount in casing	kg/m well depth	90.4	81	118
Diesel_use_during_drilling	Diesel use during drilling	MJ/m well depth	2,270.1	1,022	3,632
Length_of_pipelines	Length of collection pipelines from boreholes to power plant	meter	36,000	21,600	50,400
Steel_in_pipelines	Steel use in pipelines	kg/meter	197	118.2	275.8
Steel_in_building	Steel use in buildings	kg/MW	35,115	21,069	49,161
Steel_in_machinery	Steel use in machinery	kg/MW	9,850	5,910	13,790
CO2_in_geofluid	CO2 in geofluid	g/kg geofluid	0.0014	0.0012	0.0023
Capacity_factor	Power generation capacity factor	-	0.87	0.6	1
Power_output	Electrical output	MW	303	400	500
Lifetime	Lifetime of the power plant	Years	30	20	40


Image source: Orka Náttúrannar

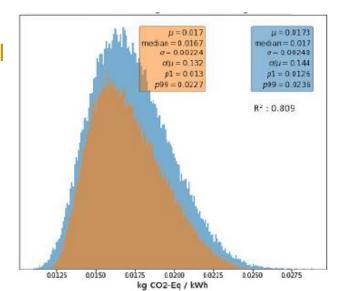
Selection of key variables after running the Global Sensitivity Analysis (Sobol indexes)

Key parameters

- 1. CO2 concentration in geofluid,
- 2. Power output,
- 3. Lifetime
- 4. Capacity factor
- 5. Well depth
- 6. Diesel use during drilling
- → Per indicator, the simplified model uses 2 to 6 of these key parameters.

 $\mu = 0.0173$ median = 0.017 $\sigma = 0.00248$

Simplified model for climate change category


From $f(14 \text{ variables}) => \phi(2 \text{ variables})$:

<u>Simplified model formula (2-variables):</u>

$$\frac{3.63 \cdot 10^{3} CO_{2ingeofluid}}{Power_{output}} + 1.4 \cdot 10^{-6} Power_{output} + 0.000625 + \frac{1.02}{Power_{output}} + \frac{77.1}{Power_{output}^{2}}$$

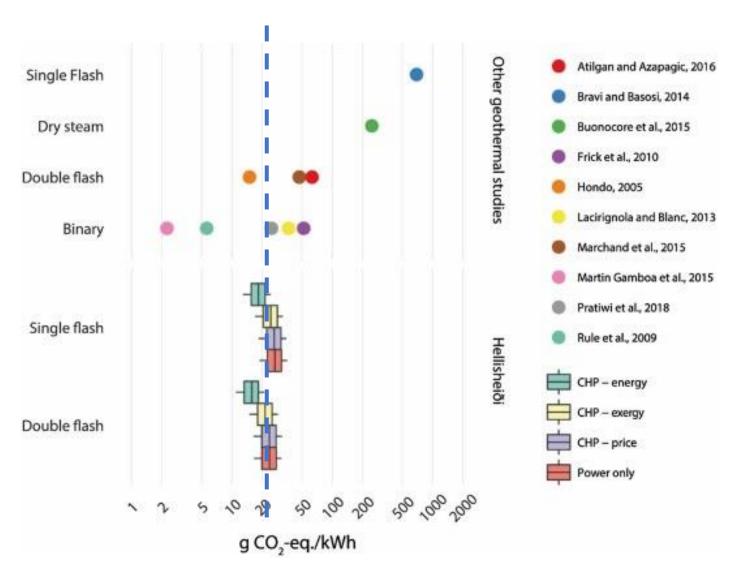
Simplified model

Reference LCA model

A 2 variables model explaining **83** % of the variability for GHG issued from the stochastic scenarios on the reference model

Affinity between the reference model and the 2-variables simplified model R^2 = 0.809

(overlap between estimates of the reference and the simplified model)



Domain of validity for both models: the Reference LCA model and the simplified models

- A system with a hydrothermal liquid/vapor geothermal source, natural flow
- Single or double flash system producing both heat and electricity.
- There is no abatement technology connected and
- the electrical output is in the range of 200 to 400 MWe MWe (high capacity factor)
- ➤ Thermal output is 133 MWth about 50% capacity factor.
- > The range of values for the variable parameters as specified in Table 9 (Douziech et al., 2020)

Domain of validity for both models: the Reference LCA model and the simplified models

This results in 21.6 g CO2/kWh for the climate change impact category which is well in line with the results from the paper, reporting between 18 and 24 g CO2-eq./kWh for single flash configuration and between 15 and 23 g CO2-eq./kWh for double flash configuration.

